Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Comput Biol ; 20(3): e1011888, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446830

RESUMO

Tumor heterogeneity is a complex and widely recognized trait that poses significant challenges in developing effective cancer therapies. In particular, many tumors harbor a variety of subpopulations with distinct therapeutic response characteristics. Characterizing this heterogeneity by determining the subpopulation structure within a tumor enables more precise and successful treatment strategies. In our prior work, we developed PhenoPop, a computational framework for unravelling the drug-response subpopulation structure within a tumor from bulk high-throughput drug screening data. However, the deterministic nature of the underlying models driving PhenoPop restricts the model fit and the information it can extract from the data. As an advancement, we propose a stochastic model based on the linear birth-death process to address this limitation. Our model can formulate a dynamic variance along the horizon of the experiment so that the model uses more information from the data to provide a more robust estimation. In addition, the newly proposed model can be readily adapted to situations where the experimental data exhibits a positive time correlation. We test our model on simulated data (in silico) and experimental data (in vitro), which supports our argument about its advantages.


Assuntos
Fenômenos Genéticos , Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
2.
Cell Rep Methods ; 3(12): 100654, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38065095

RESUMO

Current treatment selection for acute myeloid leukemia (AML) patients depends on risk stratification based on cytogenetic and genomic markers. However, the forecasting accuracy of treatment response remains modest, with most patients receiving intensive chemotherapy. Recently, ex vivo drug screening has gained traction in personalized treatment selection and as a tool for mapping patient groups based on relevant cancer dependencies. Here, we systematically evaluated the use of drug sensitivity profiling for predicting patient survival and clinical response to chemotherapy in a cohort of AML patients. We compared computational methodologies for scoring drug efficacy and characterized tools to counter noise and batch-related confounders pervasive in high-throughput drug testing. We show that ex vivo drug sensitivity profiling is a robust and versatile approach to patient prognostics that comprehensively maps functional signatures of treatment response and disease progression. In conclusion, ex vivo drug profiling can assess risk for individual AML patients and may guide clinical decision-making.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico
3.
J Math Biol ; 86(5): 68, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017776

RESUMO

Theoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs' applicability in cancer research.


Assuntos
Ecologia , Neoplasias , Humanos , Dinâmica Populacional , Crescimento Demográfico , Modelos Biológicos
4.
Cell Rep Methods ; 3(3): 100417, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056380

RESUMO

Tumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug-tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug-response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded limited results, due in part to the imperfect mapping between genomic variation and functional characteristics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling phenotypic heterogeneity from standard drug-screen data on bulk tumor samples. This method, called PhenoPop, reliably identifies tumor subpopulations exhibiting differential drug responses and estimates their drug sensitivities and frequencies within the bulk population. We apply PhenoPop to synthetically generated cell populations, mixed cell-line experiments, and multiple myeloma patient samples and demonstrate how it can provide individualized predictions of tumor growth under candidate therapies. This methodology can also be applied to deconvolution problems in a variety of biological settings beyond cancer drug response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular , Genômica
6.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36993598

RESUMO

Evolution is a stochastic yet inevitable process that lies at the heart of biology yet in the multi-cellular environments within patients, ecological complexities arise via heterogeneity and microenvironments. The interplay of ecology and mutation is thus fundamental to predicting the evolution of complex diseases and engineering optimal treatment solutions. As experimental evidence of ecological interactions between disease agents continues to grow, so does the need for evolutionary theory and modeling that incorporates these interaction effects. Inspired by experimental cell biology, we transform the variables in the interaction payoff matrix to encode cell-cell interactions in our mathematical approach as growth-rate modifying, frequency-dependent interactions. In this way, we can show the extent to which the presence of these cell-extrinsic ecological interactions can modify the evolutionary trajectories that would be predicted from cell-intrinsic properties alone. To do this we form a Fokker-Planck equation for a genetic population undergoing diffusion, drift, and interactions and generate a novel, analytic solution for the stationary distribution. We use this solution to determine when these interactions can modify evolution in such ways as to maintain, mask, or mimic mono-culture fitness differences. This work has implications for the interpretation and understanding of experimental and patient evolution and is a result that may help to explain the abundance of apparently neutral evolution in cancer systems and heterogeneous populations in general. In addition, the derivation of an analytical result for stochastic, ecologically dependent evolution paves the way for treatment approaches requiring knowledge of a stationary solution for the development of control protocols.

7.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36993678

RESUMO

The evolution of resistance remains one of the primary challenges for modern medicine from infectious diseases to cancers. Many of these resistance-conferring mutations often carry a substantial fitness cost in the absence of treatment. As a result, we would expect these mutants to undergo purifying selection and be rapidly driven to extinction. Nevertheless, pre-existing resistance is frequently observed from drug-resistant malaria to targeted cancer therapies in non-small cell lung cancer (NSCLC) and melanoma. Solutions to this apparent paradox have taken several forms from spatial rescue to simple mutation supply arguments. Recently, in an evolved resistant NSCLC cell line, we found that frequency-dependent ecological interactions between ancestor and resistant mutant ameliorate the cost of resistance in the absence of treatment. Here, we hypothesize that frequency-dependent ecological interactions in general play a major role in the prevalence of pre-existing resistance. We combine numerical simulations with robust analytical approximations to provide a rigorous mathematical framework for studying the effects of frequency-dependent ecological interactions on the evolutionary dynamics of pre-existing resistance. First, we find that ecological interactions significantly expand the parameter regime under which we expect to observe pre-existing resistance. Next, even when positive ecological interactions between mutants and ancestors are rare, these clones provide the primary mode of evolved resistance because their positive interaction leads to significantly longer extinction times. We then find that even in the case where mutation supply alone is sufficient to predict pre-existing resistance, frequency-dependent ecological forces still contribute a strong evolutionary pressure that selects for increasingly positive ecological effects. Finally, we genetically engineer several of the most common clinically observed resistance mechanisms to targeted therapies in NSCLC, a treatment notorious for pre-existing resistance. We find that each engineered mutant displays a positive ecological interaction with their ancestor, as predicted our theoretical work. As a whole, these results suggest that frequency-dependent ecological effects may provide the primary mode by which pre-existing resistance emerges.

8.
Nat Commun ; 14(1): 115, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611026

RESUMO

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Assuntos
Leucemia Mieloide Aguda , Medicina de Precisão , Humanos , Transdução de Sinais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia
9.
J Biol Chem ; 296: 100179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303632

RESUMO

Breakpoint Cluster Region-Abelson kinase (BCR-Abl) is a driver oncogene that causes chronic myeloid leukemia and a subset of acute lymphoid leukemias. Although tyrosine kinase inhibitors provide an effective treatment for these diseases, they generally do not kill leukemic stem cells (LSCs), the cancer-initiating cells that compete with normal hematopoietic stem cells for the bone marrow niche. New strategies to target cancers driven by BCR-Abl are therefore urgently needed. We performed a small molecule screen based on competition between isogenic untransformed cells and BCR-Abl-transformed cells and identified several compounds that selectively impair the fitness of BCR-Abl-transformed cells. Interestingly, systems-level analysis of one of these novel compounds, DJ34, revealed that it induced depletion of c-Myc and activation of p53. DJ34-mediated c-Myc depletion occurred in a wide range of tumor cell types, including lymphoma, lung, glioblastoma, breast cancer, and several forms of leukemia, with primary LSCs being particularly sensitive to DJ34. Further analyses revealed that DJ34 interferes with c-Myc synthesis at the level of transcription, and we provide data showing that DJ34 is a DNA intercalator and topoisomerase II inhibitor. Physiologically, DJ34 induced apoptosis, cell cycle arrest, and cell differentiation. Taken together, we have identified a novel compound that dually targets c-Myc and p53 in a wide variety of cancers, and with particularly strong activity against LSCs.


Assuntos
Antineoplásicos/farmacologia , Competição entre as Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-28356768

RESUMO

BACKGROUND: Approximately 15%-20% of all diagnosed breast cancers are characterized by amplified and overexpressed HER2 (= ErbB2). These breast cancers are aggressive and have a poor prognosis. Although improvements in treatment have been achieved after the introduction of trastuzumab and lapatinib, many patients do not benefit from these drugs. Therefore, in-depth understanding of the mechanisms behind the treatment responses is essential to find alternative therapeutic strategies. MATERIALS AND METHODS: Thirteen HER2 positive breast cancer cell lines were screened with 22 commercially available compounds, mainly targeting proteins in the ErbB2-signaling pathway, and molecular mechanisms related to treatment sensitivity were sought. Cell viability was measured, and treatment responses between the cell lines were compared. To search for response predictors and genomic and transcriptomic profiling, PIK3CA mutations and PTEN status were explored and molecular features associated with drug sensitivity sought. RESULTS: The cell lines were divided into three groups according to the growth-retarding effect induced by trastuzumab and lapatinib. Interestingly, two cell lines insensitive to trastuzumab (KPL4 and SUM190PT) showed sensitivity to an Akt1/2 kinase inhibitor. These cell lines had mutation in PIK3CA and loss of PTEN, suggesting an activated and druggable Akt-signaling pathway. Expression levels of five genes (CDC42, MAPK8, PLCG1, PTK6, and PAK6) were suggested as predictors for the Akt1/2 kinase-inhibitor response. CONCLUSION: Targeting the Akt-signaling pathway shows promise in cell lines that do not respond to trastuzumab. In addition, our results indicate that several molecular features determine the growth-retarding effects induced by the drugs, suggesting that parameters other than HER2 amplification/expression should be included as markers for therapy decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...